InfinityVM Litepaper:
Enshrining Offchain Compute

The InfinityVM Team
Version 1.0: 2024-09-01

Abstract

Blockchains were developed to solve the double-spend problem in a trustless setting, tra-
ditionally by relying on replicated execution within onchain virtual machines (VMs). Despite
improvements in verifiable state replication models, current blockchain systems remain con-
strained by this design, optimizing for apps built entirely onchain with fully decentralized com-
pute. InfinityVM instead reorients this paradigm towards decentralized verification of central-
ized compute. This is accomplished by vertically integrating offchain compute with an enshrined
verification mechanism, combining the safety of zero-knowledge proofs with the efficiency of an
optimistic network. InfinityVM applications execute primarily offchain, unconstrained by an
onchain VM, and only utilize the blockchain for the decentralized properties they require: cen-
sorship resistance, verifiability, and composability. This design enables applications to scale
both horizontally (distributed workloads) and vertically (flexibly resourced machines), while
maintaining state offchain for optional privacy. InfinityVM supports the inevitable endgame of
decentralized applications using all resources at their disposal for optimal performance while
preserving the crucial properties of decentralization.

1 Why blockchains?

Blockchains were first proposed as a mechanism to facilitate exchanges between any two willing
parties without the need for a trusted third party [11]. The fundamental requirement of such a
system is to leverage cryptography, rather than trust, to ensure transactions cannot be reversed and
thus that double spends can be prevented. With this achieved, a distributed ledger can be developed
that has no central control.

The double-spend problem, while conceptually simple, has shaped the core principles of modern
blockchain design:

1. Transaction immutability: The resilience of the system against transaction reversions.
Protocols such as Proof of Work (PoW) and later Proof of Stake (PoS) have emerged to enable
a distributed network of nodes to objectively agree on transaction ordering.

2. Censorship Resistance: The ability of the system to facilitate transactions for all willing
participants, irrespective of potential adversarial actions.

3. Credible Verifiability: The capacity for any party to participate in and audit the network,
thereby maintaining system integrity.

2 Blockchains are bounded by design

Blockchains at their core are replicated state machines, intended to maintain data in a global context
not subject to any central authority in any particular jurisdiction. In order to modify this data,
nodes must process transactions that transition the global state. Typically transactions are defined
with onchain VMs where all nodes must replicate execution and reach consensus on both the input
ordering and the state transition results.

Replicated onchain execution necessitates stringent resource management to safeguard against
DoS attacks and malicious system access. This introduces strict limitations on the capabilities of
onchain applications, notably:

1. Execution constraints: transactions and blocks have limits on the amount of computation
(often termed gas) they can process.

2. Storage limitations: onchain storage is limited and expensive, restricting the possibility to
store images or other media onchain, and limiting the size of deployed contracts.

3. Complexity limitations: onchain VMs must function uniformly across all hardware, often
disallowing common operations like floating point math.

4. Onchain lag: all onchain applications must update at the speed of the underlying chain’s
block time. This can lead to applications constantly being out of sync with the offchain world,
as is most notably in the case of AMMs and Loss-Versus-Rebalancing [9].

If we break the tasks of a replicated state machine down to its core properties, these systems
actually comprise two separate but related tasks: consensus on input ordering, and execution of
those inputs in that order. Most existing blockchains tightly couple these two ideas, requiring all
validating nodes to both order and execute transactions and then come to consensus on the results.
The scalability of this system is fundamentally limited by the capacity of its weakest node since
every node must be able to replicate all work in order to reach consensus.

Often formalized as “minimum hardware requirements” this parameter describes the hardware
a theoretical minimum node will be running. Blockchains are thus bottlenecked by the capability
of these minimum nodes, creating a tension between chain scalability and decentralization of nodes.
In another sense, this rigidity in network resources also requires that the network constantly be
over-resourced for the expected worst-case (highest) load, further constraining efficiency.

3 The rise of performant blockchains

The EVM greatly enhanced onchain operations, but Ethereum remains constrained by the tools
available at the time of its creation. To address the limitations of the EVM, many solutions have
been developed to push the bounds of performant and expressive compute.

3.1 Performance

Recent trends in blockchain designs have been towards “high performance” architectures, attempting
to move the frontier of blockchain capabilities forward.

One common approach is to build a new onchain VM that addresses the limitations of the
EVM. The most successful of these approaches, the Solana Virtual Machine (SVM), has achieved
substantial performance gains by utilizing multiple cores to enable parallel transaction processing.
However, this success comes at some cost in developer experience and still inherits the primary
limitation of all onchain compute: execution must still be redundantly replicated across all nodes in
the network, limiting its potential to scale.

A more fundamental approach to performance optimization involves decoupling execution from
consensus [16, 10]. This separation can be achieved by various means and allows for the two core
tasks to run in parallel: one process to achieve consensus on the ordering and availability of input
data to the state transition function, and another process to execute the state transition function
over these inputs. Consensus can optimize for a breadth of many nodes simply agreeing on ordering,
whereas execution can run a smaller set of specialized nodes to execute the state transitions quickly.

However, these gains are all fixed improvements in performance, not ultimately scalable archi-
tectures [1]. This mechanism for upgrading performance will always be inflexible and sporadic.

3.2 Expressivity

While performance is the core metric for most new blockchain designs, the expressivity of their
runtime environments directly limits the complexity of applications that can be built. In order to
enable further expressivity, teams have utilized two primary mechanisms: AltVMs and coprocessors.

AltVMs have historically focused on one narrow field of expressivity: the language in which
applications can be written. VMs like SVM allow developers to write smart contracts in languages
like Rust, expanding the set of developers beyond just Solidity developers. AltVMs like Stylus also
introduce further expressivity by enabling WASM bytecode, but are still subject to limits on contract
size and gas per block.

Coprocessors represent a more dramatic attempt at enhancing onchain expressivity as they enable
applications to leverage the results of stateless offchain compute. To date, coprocessors have largely
played a supplemental role to onchain VMs by enabling specific complex functions over historical
state. This is largely due to the fact that verifying this offchain compute requires concessions on
either cost (ZK) or finality time (Optimistic).

3.3 Rollups

One instantiation of these ideas that improves both performance and expressivity is the concept of
sharding, realized most directly today through rollups on Ethereum. Rollups enable more compute to
be processed per block on the base chain because they can batch and compress multiple transactions
into a single base layer transaction, and prove the validity of the entire batch. Rollups can also offer
more expressivity by utilizing AltVMs, enabling applications that inherit the base chain’s security
to run with more flexibility.

However, the scalability provided by rollups comes with significant costs. Rollups today frag-
ment the liquidity of the base layer because they require users to bridge into their ecosystem. These
systems are also often implemented with upgradeable contracts on the base layer, introducing ad-
ditional trust assumptions for security. Overall, rollups are often best considered as extensions of
block space, as they inherit many of the same limitations associated with onchain compute.

4 Breaking the path dependency on onchain compute

Recent attempts at improving the performance and expressivity of blockchains have dramatically
increased the scope of what can be implemented onchain. However, if we zoom out we can see that
these advancements largely target systems that are path-dependent on existing onchain paradigms,
rather than optimizing for the more fundamental goals of blockchains.

If we approach the design of a distributed ledger with double spend protections from first princi-
ples, we can imagine an incredibly streamlined solution. In this model, nodes would run a minimal
blockchain serving two purposes: reaching consensus on an initial state, and agreeing on an ordering
of transactions that would update this state. These transactions would then be efficiently executed
offchain, with their outputs verified onchain, enabling each node to transition from the initial state
to the output state in a trustless manner [2].

From this description, we can see that a natural fit for this purpose is ZK proofs. ZK promises
many things, but we are mostly concerned with its ability to enable any prover to generate succinct
proofs of computation over some public inputs, and allow anyone to efficiently verify these proofs.
If we integrate this into a blockchain, we can enable developers to execute any function that they
can generate a ZK proof for, and then have all of the nodes simply verify this proof to process the
state transition.

Ordered list
of transactions

O
OO0

Prover nodes generate
prooP of state
transition

Proof of
state transition

Blockchain reaches

consensus on
transaction or‘de,r‘ing
and verifies proofs

Figure 1: Centralized proving with decentralized verification

From this premise, we can also claim that developers should not be constrained by the bounds of
onchain compute. Ideally, a developer should be able to write their application the same way they
would outside of a blockchain context — as an application that can be scaled horizontally [6] as well
as vertically, using the best resources available.

This approach also works nicely to enable scalability because of its flexible nature. From the per-
spective of the base chain, nodes are simply ordering a set of transactions and verifying a (constant-
sized) proof. Application developers can run many apps on different servers that are then proven to
the base layer.

By combining these ideas, we can create a system that enables:

1. High performance: nodes must only come to consensus on ordering and verifying proofs,
enabling maximum performance.

2. Scalability on-demand: applications can run their own dedicated hardware that scales up
or down as needed. This enables both horizontal and vertical scaling on a per application
basis.

3. Ultimate developer freedom: applications can be built exactly as they would be offchain,
only committing their state onchain as needed.

This is the inevitable end state of blockchain applications: offchain apps that inherit the spe-
cific benefits that a blockchain provides (censorship resistance, self-custody, trustless safety, and
composability) without needing to run fully onchain.

5 InfinityVM: app servers with blockchain scaffolding

We introduce InfinityVM: an execution runtime to enshrine offchain compute into the protocol,
designed to realize the full potential of the ZK-enabled future within the capabilities of ZK today.
In fact, Infinity VM will always outperform pure ZK because it removes a layer of overhead, making
it the best way to build ZK applications.

EVM InfinityVM

RISC-V

[B : Mw j

v

o

Figure 2: InfinityVM enshrines coprocessing alongside the EVM

Developers can design applications that run offchain but are then verified within the core logic of
the chain itself, allowing for instant and safe verification. InfinityVM enables applications to be built
as true “servers with blockchain scaffolding”, as described by Vitalik [3]. Rather than developing
applications that fit into the onchain constraints, Infinity VM enables offchain applications to hook
into the specific benefits of the blockchain that they require.

Infinity VM applications are:

1.

Fully expressive: apps can be written as offchain applications, allowing them to do things
impossible within the constraints of blockchain VMs like the EVM.

. Scalable: each app can run on its own terms, so resources do not need to be shared or

limited. Apps can increase or decrease resource requirements on-demand to scale vertically or
scale horizontally via more parallelized instance of the app server [6].

Safe: application state is backed by ZK validity proofs [14, 15, 5], enabling trustless verification
with no intermediaries.

Censorship resistant: each application can utilize the base protocol as needed for forced-
inclusion, utilizing the slower but more robust inclusion guarantees.

Composable: because applications instantly settle to the same base layer with uniform se-
curity guarantees, all state is immediately composable through the EVM.

With this architecture, we can break out of the path-dependent nature of existing blockchain
applications where core logic is built onchain and supplemented by offchain systems. Instead, In-
finity VM applications can be built offchain, leveraging InfinityVM’s minimal onchain scaffolding to
inherit the necessary blockchain properties.

Infinity VM utilizes the EVM at the base layer to enable composability and secure state manage-
ment. This takes advantage of the EVM for the express purpose of high security and simple logic,
and also inherits the rich tooling and support for the EVM.

Blockchain VM
8— 74{ App 1] 8 \
Blockehain \
2 e]| & |
S L 2
A S ot
APP users Apphna‘tions bounded within the onchain pp users APP!‘QQtlonS fun on
VM compete for shared resources Aeol'“’gg:(ht?\re“ds
O AN

Figure 3: Comparison of blockchain app scaling

6 Challenges with offchain compute

Naively, we could accomplish each of these properties by utilizing ZK to enable any server to run an
application and post proofs regularly for onchain verification. This quickly runs into the limitations
of ZK: zkVMs today can express practically any application, but are still not performant enough to
provide the latency and low costs expected for modern applications.

Alternatively, we can utilize optimistic techniques: applications can elect proposers that can
attest to a state transition without any accompanying proof. Anyone can then run a “challenger”
service to verify this transition offchain and submit a challenge onchain if the proposer maliciously
submitted a fraudulent result.

However, optimistic systems must account for the possibility of reversions in the case of fraud.
For a system like Arbitrum [8], this is minimized because the entire system is internally consistent
and so this reversion risk is only relevant for any L2 state access on the L1 or for inter-chain actions.

When we imagine a system like this on an application-basis, where each application can post its
result and is subject to a fraud period, this internal consistency goes away. Now each application
can be reverted independently, which leads to each app needing to implement logic to handle fraud
and reversions. In practice, this reversion logic at an application level is extremely complex, often
requiring days of offchain social coordination to determine which actors were harmed and what
the “right” reversion path is. Application-level reversion logic is a massive increase in complexity
not only for developers to implement but also for users to understand. This only gets worse when
considering composition of many applications with distinct reversion conditions.

Block 1
Chain

Block 2

~
J

Coprocessor sends
results to App 1.
Coprocessor — °
Other apps way derive
state from App 1.

r
(.

Chain

Coprocessor sends a

° c malicious result to App 1.
° All other apps now read

This malicious state.
Block 3

Chain APF 1 runs logic. to revert

state to fix the

Coprocessor — °

Ve
o

-~
v

malicious re_SULl't.

All other apps have
alreao(y consumed the
e malicious result, so they
neecl sepo\ro(te_ logic to
revert their state.

Coprocessor — °

s
-

Figure 4: How co-dependent optimistic coprocessor apps introduce systemic complexity

7 Enshrining offchain compute

InfinityVM resolves these challenges fundamentally by enshrining offchain compute into the pro-
tocol, specifically into the fork-choice rule of the chain itself. We accomplish this by utilizing ZK
fraud proofs and tying honest execution of coprocessing into the definition of the valid chain. The
Infinity VM protocol guarantees that the canonical view of an InfinityVM chain will include honest
execution of any offchain compute.

In-protocol | Out-of-Protocol | Latency | Cost DevX
Finality Finality

Optimistic High High Low Low Poor — devs must handle
application level reorgs

Zk Low Low High High Great — No reversions, no
trust assumptions

Enshrined Low High Low Low Good — Reversion logic is
OP-ZK abstracted

Figure 5: Trade-off comparison between offchain compute integration techniques. Latency here
refers to the perceived onchain time to receive results (including prover times).

Whereas the previous section detailed approaches to add supplemental offchain compute to an
onchain system; Infinity VM elevates offchain compute into the protocol as a first-class citizen along-
side the EVM. Fraud proofs run with a designated challenge period: any user can audit the output
of a coprocessing job and submit a challenge onchain to dispute the result. Once challenged, the
challenger is given time to run the job and generate a ZK validity proof of the correct execution.
Upon a successful challenge, the chain itself will reorg by invalidating any blocks built off of the
incorrect coprocessor result.

When fraud is

Block 3
with corrected Block ¢ d‘%teCted, 'the
@ @ result chain reorgs with
the app

4
;" Coprocessor
4 sends a
Block 1 Block 2 malicious

~
N~ result
~

Block 3
with malicious
result

Figure 6: How enshrined coprocessing works: blocks containing invalid results are invalidated and
forks including them are abandoned

This mechanism ensures that all applications built on Infinity VM will be derived from the same
shared state and so they will all either progress together or reorg together, enabling near instant
composability. This liberates developers and users from needing to process the complex overhead of
potential reversions at the application level, freeing them to consider all offchain actions the same
way they consider EVM operations. While each application can build as their own offchain server,
one core unlock for onchain applications is permissionless composability. InfinityVM applications
access this composability via coordinated offchain actions or the EVM base layer. This represents
our philosophy of using the best tool for the job — optimized offchain servers to run applications and
slower but well-understood blockchain VMs to settle and compose onchain. Effectively, applications
are settling their state to the base layer of the InfinityVM. Certain application constructions can
maintain all balances on the base layer, using their application logic simply as the state transition

engine to move from one settled balance to another. Utilizing this design pattern preserves liquidity
on the base layer, avoiding fragmentation. Applications can freely scale their app logic, compose
between each other, and enjoy the positive sum ecosystem where all liquidity growth benefits all
applications.

7.1 Optimizing for the happy path

Enshrining offchain compute enables powerful applications, but requires specific concessions. No-
tably, we are making a specific decision to use optimistic verification over “pessimistic” verification.
This distinction can be summarized by the burden of proving: optimistic techniques default to
successful (non-fraudulent) outcomes where a proof is required to prove fraud but in the honest
case is not needed. Pessimistic verification requires a proof on submission. As outlined above, this
represents a tradeoff between onchain latency and prover costs.

Specifically, InfinityVM’s design is choosing a tradeoff space that optimizes for the happy path
where a proposer is not fraudulent. In a perfect optimistic system, the proposer never submits a
fraudulent attestation and so the fraud proof mechanism is never utilized. This reduces the prover
overhead towards 0, enabling the lowest cost for onchain verification. Rollups in production today
(like Arbitrum and OP mainnet) are examples of these systems. As the role of a proposer in an
optimistic system is expanded beyond trusted entities, this assumption of an honest proposer will no
longer hold. However, our belief is that honest behavior will continue to be the dominant strategy
for proposers.

As a result, it makes sense to optimize for the case of an honest proposer: proposers don’t need
to generate slow and expensive proofs for every state transition, but instead we can rely on a healthy
challenger network that can generate proofs in the edge cases as needed.

The primary impact of this choice is on inter-chain actions — because the state of the chain is
dependent on this challenge period you cannot safely send assets between a chain using Infinity VM
until it is “settled”. This is analogous to an optimistic rollup’s fraud proof period. In the case of
optimistic rollups, specialized actors like liquidity providers (LPs) have emerged to abstract this
complexity away from users: users are able to operate so called “fast bridges” because the LP waits
for the reversion period and fronts liquidity for users.

For the InfinityVM system, LPs can emerge to provide the same service. All state within the
Infinity VM ecosystem is internally consistent (it all reverts together) so the only actions that will
require external LPs will be bridging off of the chain, very similar to rollups. Overall, we are
trading off some complexity for cross-chain interoperability, but in return we gain fully expressive
and scalable offchain compute at minimal cost.

8 Architecture

The InfinityVM sidecar will expose a mechanism for developers to request jobs that can run on

given sets of inputs (including both onchain and offchain data) and post results onchain. These jobs

fundamentally consist of optimized code running on a regular server to either define or supplement an

application. This mechanism can broadly be categorized as “coprocessing”: dedicating a specialized

and parallel offchain process to supplement the execution onchain via verifiable computation.
Developers can design their applications in two primary flavors:

1. Onchain apps using optimized offchain server compute to process complex logic

2. Offchain apps running on scalable offchain servers but posting verified state commitments
and transitions onchain

[Onchain apps

In'Pinitt/VM

App uses offchain
Users make — coprocessor o perform
calls to app COMP[G)(compu‘te

8 8 8 contract APP contract
———

[S| Coprocessor
8
é % ——
—————— Coprocessor
App users C———————) | retums result back
— to app contract

Offchain apps
InfinityVM
App server
U — batches user
interact with actions and Coprocessor | App contract
g Server wokes call Pcsf;:‘msuk PP

to coprocessor to update

state in app

88888 "App Server' OOO}» Coprocessor B

APP users

Figure 7: Two alternative app designs: differing on where the bulk of computation is processed

Regardless of the application’s nature, all Infinity VM enabled applications will make standard
requests for offchain work.

8.1 Requests

Utilizing the coprocessor begins with developers submitting Programs to the Coprocessor Net-
work (a network of nodes running the InfinityVM sidecar). These Programs look like any other
program developed today to run on a server. They include optimized code to accomplish a par-
ticular purpose without needing to adhere to a strict framework of blockchain semantics (block/tx
limitations). A Program will define the code it runs and the interface of the inputs and outputs it
expects.

Once the Program is submitted, a user can request a Job to run this program over a set of
inputs. This data is posted to the coprocessor network and also replicated on an external DA
service to provide strong availability and verifiability guarantees.

10

@ InPEv\i‘tL/VM
Submit program
(N\
App contract
Receive
program ID ——————
—————
Coprocessor ————
@ network —————
C————————
Reauest job ————
q m ID + inputs)
progro I puts
Sends :\ol: re,sul‘b)
Re_cejve_ to app contract
:lob ID ~ /

Figure 8: System architecture with an enshrined coprocessor receiving requests

Validators will then run this Job via the InfinityVM sidecar which operates as a parallel process
to regular node consensus. This parallelization applies on a per-job basis, enabling these jobs to
fully optimize execution via both horizontal and vertical scaling on-demand per job. Jobs can be
requested in two primary modalities:

First is asynchronous requests: these requests can be made either onchain or offchain and are
a commitment from the user of their intention for a coprocessing job to run a specific Program with
a given set of inputs and to post the result to a given smart contract’s callback.

Alternatively, users may make synchronous requests to the coprocessor. This is a unique
capability inherent to Infinity VM enshrining the coprocessor into the chain. A user in this case can
send a transaction requesting a coprocessing result to be committed within the same transaction as
the request. This works for execution that has fixed cycle limits in order to not affect average block
times. The proposer then commits to the result in the same transaction which may then use that
result within that block to continue further operations.

Regardless of the approach taken, a result is then posted to the requested smart contract’s
callback function with an associated signature from the proposer of the result and the commitment
to the job.

8.2 Validators

Once a developer submits a request to the coprocessor network, anyone can run the requested job
with the committed set of inputs. This enables any actor to validate what the correct result of an
offchain request is. In the event that an incorrect result to an offchain request was posted onchain,
validating nodes would detect this and reject any blocks including this fraudulent result as invalid.
Validating nodes are therefore able to maintain full trustless safety, although it does come at the
cost of needing to run all onchain and offchain compute themselves. !

8.3 Proposers

While anyone can view and audit the correctness of job results, not just anyone can post a result
onchain. The specific nodes that can post results onchain are called Proposers and they must post

1t is expected that various service providers in the ecosystem will run full validating nodes. This enables them to
have a trustless view of the correct state of the chain at all times, allowing services like liquidity providers to provide
fast bridging securely. These nodes are analogous to full nodes on an optimistic rollup like Arbitrum [8].

11

an economic bond with the coprocessor network. This economic bond will be slashed in the event
that a proposer posts a fraudulent response, incentivizing the proposer to act honestly.

The key to Infinity VM’s ability to provide instant and composable offchain compute is enshrining
the coprocessor into the fork-choice of the chain. However, this means that a malicious proposer
can introduce a fork by maliciously posting fraud. In practice, this attacker’s gain is actually quite
limited because of the ability for validating nodes to detect fraud quickly and stop transacting with
the fraudulent network state.

That said, instances of fraud still come at significant cost monetarily and socially, and so our
system takes all actions to minimize them. Specifically, the role of proposer in Infinity VM will follow
a similar path to the proposer of state roots in optimistic rollup systems. Initially, this will be a
permissioned action by a set of trusted actors, utilizing both economic bonds and social reputation
to incentivize good behavior. In the longer term, though, a network of proposers will be built that
can be rotated to choose the next proposer.

8.4 Challengers

Challengers are critical actors in the system who identify instances of fraud and submit a proof of
incorrect execution. A challenger must necessarily run a full validating node in order to determine
the correct state and detect a malicious proposal. As mentioned above, ecosystem service providers
will likely play the role of validators and challengers because the services they provide require instant
finality. They are incentivized to provide this service by user fees.

[Standard cha“e,nge, pe,ﬁoo(]

Coprocessor Coprocessar
result is result is
pos‘ted Pinalized

Cha“ev\ge_ ... no Fraud proof is submitted ... Cho‘“enﬂe
Peﬁod peﬁoo(
Be_gins ends

Figure 9: Coprocessing jobs reach finality onchain when the challenge period expires without chal-
lenge

Once fraud is detected, a challenger can initiate a Challenge by sending a transaction with an
associated bond. This transaction must be sent within the challenge period mentioned above. Once
a proposal has been challenged, a new timer called the prover period begins. This designates the
time that the challenger is given to generate a fraud proof. A challenge process can end in one of
two ways:

1. Fraud: if the Proposer P did commit fraud by posting result X, a challenger C can run the same
program over the same inputs and generate a ZK validity proof that shows the correct result
should be Y. Challenger C can then post this proof to the arbitrating smart contracts onchain

12

which will verify the proof and determine that the initial result X was fraud and slash proposer
P. The result Y will now be accepted everywhere as the correct state (since anyone can cheaply
verify the proof) and the chain will progress.

2. No fraud: if the Proposer did not commit fraud and X is indeed the correct response, two
paths may be followed that end in the same result. First, any actor (including the proposer)
can now generate a ZK validity proof that shows that the result actually is X. This can then
be verified onchain similarly to (1). Second, the proposer could instead do nothing. Since a
challenger cannot generate a proof that X is incorrect, the prover period will necessarily end
with an unsuccessful challenge. In both cases, the challenger C will have their bond slashed as
a penalty for wasting the protocol’s time, disincentivizing griefing attacks.

8.5 Provers

While honest nodes can always rely on eventual consistency to guarantee the correct state is always
written onchain, there are also incentives for Provers to exist to expedite the process and simplify
verification. Because all offchain actions are verifiable via ZK proofs, provers can run an asyn-
chronous process to generate ZK validity proofs for all offchain jobs. Importantly, this role is not
necessary in-protocol for any purpose besides challenges, meaning proofs are only necessary in the
worst-case, but they can provide numerous out-of-protocol benefits. 2

[Shortened cho.“e_nge periodl J

Prove,r Sul:wm‘ts
v:zhdﬂ:y proof
of result

Coproce&&or

Coprocessor
result is

result is

posted Fnalized
Block 1 Block 2 Block 3 Block ¢ Block 5
| 1
| |
Chal lenge Chal lenﬂe_
period period
Begins ends eod‘lt/

Figure 10: Once a validity proof is supplied onchain a Job is finalized with the (provably) correct
result

These provers are incentivized by the network to generate these proofs because of the benefits
they pose to the ecosystem. Any potential challenge of an offchain compute job can be instantly
closed once an honest prover is able to submit a ZK validity proof to support the posted result.
Importantly, in the limit this means that a chain with InfinityVM can become a fully ZK validated

2The existence of prover nodes would enable lighter nodes that still have trustless safety guarantees but must
necessarily lag behind the tip of the chain because of the overhead of ZK proof generation.

13

coprocessing chain. We view this as a fallback outcome because the chain must then inherit the
limitations of ZK, and InfinityVM offers the opportunity to expand beyond this.

8.6 Reversions

If fraud is posted onchain by a malicious proposer and is successfully challenged a reversion will occur.
The specific details of this reversion depend on the architecture of the chain running Infinity VM. In
the case of a fully independent L1 or a sovereign L2, the canonical chain can largely be determined
by an honest majority of nodes validating blocks with honest job results. In the event of a successful
challenge, the L1 may only slash and jail the offending proposer, but otherwise the canonical chain
can continue to grow.

In the case of deploying InfinityVM as an L2, the story is more detailed. This protocol must be
augmented to understand the potential for reversions in order to allow the base layer to follow the
canonical chain. The simplest mechanism to achieve this is by arbitrating fraud on the base layer
itself. If fraud is proven, the base layer can directly invalidate (and remove) these batches of L2
state, preventing fraudulent state transitions.

Reversions in general can be painful, particularly when socially enforced. In the case of Infini-
tyVM, however, the canonical state of the chain is deterministic and must always follow the honest
outcomes of a requested job. This is different from infamous forks in the past that have been the
result of social judgments to return stolen funds [7]. Those forks were subjective and had to be
discussed and debated over days or weeks offchain. InfinityVM is a deterministic execution engine
that uses this potential for reversion as a mechanism optimizing for scalability, but the chain will
always remain eventually consistent for honest actors.

9 Examples
9.1 Offchain App (CLOB)

One example use case this construction enables is a Central Limit Order Book (CLOB) that runs
on an optimized offchain server and uses InfinityVM as part of its blockchain scaffolding.

Inpini‘tt/VM

Users send ————— CLOB batehes
orders and orders and sends
cancellations these Por matching

o coprocessor
88888 CLOB Server

CLOB users

Posts matening |CLOB contract
results to

Coprocessor

Figure 11: How the CLOB application works: running compute offchain and running state transitions
through the coprocessor

This approach flips the existing smart contract paradigm on its head: the bulk of the application
runs offchain on a server that operates the order book centrally, enabling free, real time order
submissions and cancellations while maintaining safety and strong async composability. For each
order/cancellation submission, the server returns a signed commitment, which includes an assigned
global index. 3

3This is used to prevent violations of price-time priority.

14

The server regularly batches orders and creates a coprocessor job to run the batch against the
state transition program to match orders. The InfinityVM proposer then posts the result of this
job onchain. By enshrining verification we can guarantee that the state of the CLOB is valid once
job results are onchain. This CLOB application now has safe composability with other applications,
while processing orders at web2 speeds.

Verifying parties can trustlessly audit the state transitions by constructing the order book and
commitments. If a user detects a faulty state transition they can initiate a challenge against the
server by posting the signed commitment from the server and then running the matching algorithm
in the coprocessor to prove the correct state transition. Successful challenges will lead to the chain
reorging to remove the fraudulent state transitions and any transactions built off of it, guaranteeing
safety for traders and composing applications. Further, the design could be made censorship-resistant
by adding measures like server rotation and forced inclusion of orders onchain.

This design unlocks a trustless and highly performant CLOB implementation that significantly
improves upon previous constructions (like dYdX v3/v4), which relied on trusted parties (either
dYdX in the case of V3, or their validators in V4) to operate the order book offchain.

9.2 Onchain App (Dynamic Fee AMM)

Infinity VM also unlocks sophisticated onchain apps that benefit from supplemental offchain compute.
One exciting example of such a construction is an AMM with a dynamic fee structure (e.g. discounted
fees based on a user’s transaction volumes or account standing). Such a design has been previously
impractical since it requires complex computations that either may not fit within a block’s constraints
or may increase costs to the point of making transactions economically infeasible.

Infinity VM enables dynamic fees to be calculated offchain and then utilized onchain with uniform
trust assumptions. The coprocessor processes historical data to calculate if the specified order flow
metrics (user, asset pair, order size) should receive a discounted fee. For example, an AMM could
offer volume discounts where users who have traded more than $X in the past month qualify for
reduced fees.

It is possible to build dynamic fee AMMs using existing coprocessing frameworks as well but
relying on an external protocol presents several headwinds. Applications using a ZK coprocessor
must pay the high proof generation and verification costs to safely utilize the results onchain. Ap-
plications that instead choose to utilize the coprocessor in an optimistic setting, must incorporate
some notion of state reversion in case the coprocessing result is proven fraudulent. In this example,
there is no way to change the fee that was charged at time t (when the optimistic result was posted)
when fraud is proven onchain at time t+n. The only solution would be to hold funds or fees in
escrow until the challenge period passes, which introduces significant complexity and friction.

Onchain applications built using InfinityVM can get all of the benefits of historical state access
and ZK provable compute without needing to factor in the costs of generating and verifying ZK
proofs onchain. Infinity VM applications can also utilize the results instantly because of the enshrined
dispute mechanism, allowing apps to ignore the complexity of possible reversions.

10 Related Works

10.1 Coprocessors

The original conception for bringing offchain compute onchain, coprocessors are a general framework
that can be implemented with ZK or optimistic verification. Applications on these coprocessors have
been limited, primarily just enabling historical state access onchain. This is because the external
verification methods introduce limitations either on latency or on costs.

10.2 Enshrined Rollups

An idea most directly associated with the Tezos ecosystem, enshrined rollups have also been consid-
ered for the Ethereum ecosystem. What is meant by enshrining a rollup, though, is slightly different
from enshrining offchain compute (like InfinityVM). Most enshrined rollup designs are specifically
focused on the smart contracts that maintain the state of the rollup on the base chain. By pulling

15

the rollup’s smart contracts into the chain the rollup is no longer controlled out-of-protocol, and
S0 it can inherit direct security from the base chain. This design is a tradeoff between security,
trustlessness, and flexibility.

10.3 Rollups with Beefy sequencers

An approach growing in popularity today is to run traditional optimistic rollups with a centralized
sequencer but to provision this sequencer with significant resources. When paired with other inno-
vations like solutions to state access and IO, this allows the rollup to process more transactions per
second because the sequencer can handle more load and provide better UX. This has been touted as
the original conception for a rollup as a “server with blockchain scaffolding”, because the sequencer
is a high performance server and the addition of other actors in the system provide the blockchain
scaffolding.

Infinity VM can be viewed as a generalization of this idea, while also enabling further expressivity.
High-powered sequencers can enable very high TPS on existing blockchain VMs, but they are still
bottlenecked by the limits of blockchain VMs. InfinityVM enables each app to be its own high-
performance server, allowing them to be more expressive and flexibly scalable. These apps can also
use truly offchain infrastructure, rather than needing to be deployed on a blockchain.

10.4 Contingent Rollups

A core building block to the idea of InfinityVM is the idea of blocks that are contingent on the
state of another domain. This was most specifically articulated by James Prestwich’s piece on cross
optimistic rollup contingent blocks [12] and is an extension of an idea Vitalik proposed for cross-
shard bridging [4]. While this system remains viable to build on a chain by chain basis, Infinity VM
is an opinionated deployment of this idea where each application is contingent on the same state,
enabling heterogeneous composability.

10.5 Franchised Sequencers

The concept of a franchised sequencer is to enable “normal” applications in a blockchain context
[17]. Specifically, these apps are private and post “fingerprints” (state commitments) to the chain
that are verified by ZK validity proofs. The sequencer is responsible for posting these commitments,
and this right can be “franchised” or otherwise distributed. The potential for this idea is large,
enabling “regular” developers to build their applications while inheriting the benefits of blockchains
without being beholden to the chain itself — echoing many of the benefits we’ve outlined in this
paper. However, franchised sequencers do imply ZK validity proving in order to verify application
validity (a noted limitation in their design), inheriting the negatives of ZK, namely costs and prover
latency. This is because these systems have been imagined to exist on top of existing ecosystems
which do not have the capacity to add application validity checks to their protocol rules. InfinityVM
is a realization of this idea (each offchain application can be its own franchised sequencer app) while
mitigating the downsides of ZK because of our enshrined verification (using contingent state).

10.6 AggLayer / Elastic Chains

Interop solutions like AgglLayer connect rollups via shared liquidity bridges and aggregated ZK valid-
ity proofs. These aggregation layers enhance cross-chain interactions by addressing interoperability
at the infrastructure level, making it feel like a single, unified network for the end user. These
systems can then be supplemented by solutions like a shared sequencer in order to also achieve
synchronous atomic interoperability across chains.

However, these layers primarily serve to compose existing ecosystems together without funda-
mentally advancing the expressivity or performance of applications. The InfinityVM approach is a
more fundamental shift away from standard chains and towards fully expressive and scalable ap-
plication servers. InfinityVM aggregates applications as their own servers, rather than aggregating
chains, removing the need for appchains with their associated complexity. Synchronous composabil-
ity across applications is achieved by default, without relying on external shared sequencers. By

16

enshrining the validity rules of applications directly into the core protocol, Infinity VM also mitigates
the high costs and latency associated with ZK-based aggregation systems. In some ways, Infinity VM
is an opinionated implementation of an aggregation layer with strong interoperability capabilities.

10.7 Cartesi

A direct approach to bringing offchain compute onchain, Cartesi enables offchain nodes to run
application logic and unify it directly into the broader Cartesi layer 2 ecosystem. This has many
similarities to Infinity VM, but takes a different approach. Cartesi’s innovations are largely focused
on reproducible and deterministic builds + deployments of “linux machines” to run offchain compute
on. This is then incorporated into the network to allow nodes to run these machines and verify all
computation. Offchain compute is either reproduced by a network of Cartesi Nodes or is run on
a dedicated machine. This computation is still subject to eventual disputes and so must maintain
logic for reversion.

10.8 Naysayer Proofs [13]

Recent work on the topic of optimizing for ZK verification costs in the Naysayer construction was
part of the motivation for the original Infinity VM idea. The core insight of this work is that despite
the fact that the overwhelming majority of ZK proofs generated are honest and verified as true,
most systems continue to verify all proofs. This verification has significant costs, generally around
the range of 100-500k gas for a verification, but can be much larger for different proof systems.
This constant cost directly impacts the applications that can be built with ZK because they must
either internalize this cost or pass it on to users.

The naysayer construction is to still require proposers to generate ZK validity proofs, but to
defer verification to offchain entities. Anyone offchain can cheaply verify the ZK proof offchain to
determine if the proof is fraudulent or not. These actors can then determine whether they want to
send further transactions based on if the proof verifies or not. In the event that a proof does not
verify, a challenger can then generate a proof that shows the submitted ZK proof is invalid. This
challenge can then be submitted onchain and verified in order to reject the original proposal.

While this construction introduced one significant optimization to ZK systems, our view is that
there is yet another level deeper to go, which is what InfinityVM represents. With InfinityVM,
proposers do not need to generate a ZK proof at all, enabling many of the same benefits as naysayer
proofs, but with lower latency and compute costs.

11 Conclusions

While onchain VMs continue to improve, they remain fundamentally limited in performance and
expressivity. InfinityVM introduces a paradigm shift in achieving scalable decentralized compute
by leveraging verifiable offchain execution. Applications can scale flexibly independent of the base
chain, providing user experiences comparable to centralized applications today.

Infinity VM achieves this through an enshrined verification mechanism that defines the canonical
chain by the correct execution of offchain compute. The maturation of zkVMs allows us to express
any application into a zkVM to enable fraud proofs for offchain work. The architecture strategically
allows applications to compose offchain compute with onchain EVM applications, enabling each
system to excel at its purpose. By treating coprocessing as a first-class citizen, Infinity VM unlocks
brand new capabilities onchain that were previously infeasible or cost-prohibitive.

Infinity VM represents the inevitable endgame of blockchain applications: offchain systems that
inherit blockchain’s core benefits (censorship resistance, self-custody, trustless safety, and compos-
ability) without the constraints of full onchain execution. It paves the path for a new generation of
decentralized applications that can match the efficiency of centralized systems while preserving the
security guarantees of blockchains.

17

References

[1] Joseph Bonneau. Why blockchain performance 18 hard to measure.
https://al6zcrypto.com/posts/article/why-blockchain-performance-is-hard-to-measure/.

[2] Vitalik Buterin. Endgame. https://vitalik.eth.limo/general/2021/12/06 /endgame.html.
[3] Vitalik Buterin. Epochs and slots. https://vitalik.eth.limo/general /2024 /06 /30 /epochslot.html.

Vitalik Buterin. Fast cross-shard transfers. https://ethresear.ch/t/fast-cross-shard-transfers-

via-optimistic-receipt-roots/5337/1.

[5] Al6z Crypto. Jolt. https://github.com/al6z/jolt.

[6) Wei Dai. On Trust Minimization and Horizontal Scaling. https://wdai.us/posts/trust-
minimization-horizontal-scaling/.

[7] Ernesto Frontera. A History of ‘The DAO’ Hack. https://coinmarketcap.com/academy /article/a-

history-of-the-dao-hack.

[8] Offchain Labs. Inside Arbitrum Nitro. https://docs.arbitrum.io/how-arbitrum-works/inside-
arbitrum-nitro.

=

[9] Jason Milionis et al. Automated Market Making and Loss-Versus-Rebalancing.
https://arxiv.org/pdf/2208.06046.

[10] Monad. Deferred Ezecution. https://docs.monad.xyz/technical-
discussion/consensus/deferred-execution.

[11] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf.

[12] James Prestwich. Cross-ORU Contingent Blocks. https://prestwich.substack.com/p/contingency.

[13] Istvan Andras Seres, Noemi Glaeser, and Joseph Bonneau. Naysayer proofs.
https://eprint.iacr.org/2023/1472.pdf.

[14] Risc-Zero team. risc(. https://github.com/risc0/risc0.
5] Succinct Team. Succinct. https://github.com/succinctlabs/spl.

[16] Toly. Endgame Architecture. https://docs.google.com/document /d/1{Qp2G-
WOfFN19nRZVRbAwxD7Qa8H8cn5VVUVPKOF1Pg/edit#heading=h.mn48hr9e6wzk.

[17] Tom Walton-Pocock. The Franchised Sequencer. https://walpo.substack.com/p/2422£310-
€62d-44b1-9e3a-a504b9dede96.

18

https://a16zcrypto.com/posts/article/why-blockchain-performance-is-hard-to-measure/
https://vitalik.eth.limo/general/2021/12/06/endgame.html
https://vitalik.eth.limo/general/2024/06/30/epochslot.html
https://ethresear.ch/t/fast-cross-shard-transfers-via-optimistic-receipt-roots/5337/1
https://ethresear.ch/t/fast-cross-shard-transfers-via-optimistic-receipt-roots/5337/1
https://github.com/a16z/jolt
https://wdai.us/posts/trust-minimization-horizontal-scaling/
https://wdai.us/posts/trust-minimization-horizontal-scaling/
https://coinmarketcap.com/academy/article/a-history-of-the-dao-hack
https://coinmarketcap.com/academy/article/a-history-of-the-dao-hack
https://docs.arbitrum.io/how-arbitrum-works/inside-arbitrum-nitro
https://docs.arbitrum.io/how-arbitrum-works/inside-arbitrum-nitro
https://arxiv.org/pdf/2208.06046
https://docs.monad.xyz/technical-discussion/consensus/deferred-execution
https://docs.monad.xyz/technical-discussion/consensus/deferred-execution
https://bitcoin.org/bitcoin.pdf
https://prestwich.substack.com/p/contingency
https://eprint.iacr.org/2023/1472.pdf
https://github.com/risc0/risc0
https://github.com/succinctlabs/sp1
https://docs.google.com/document/d/1fQp2G-W0fFN19nRZVRbAwxD7Qa8H8cn5VVUvPKOF1Pg/edit#heading=h.mn48hr9e6wzk
https://docs.google.com/document/d/1fQp2G-W0fFN19nRZVRbAwxD7Qa8H8cn5VVUvPKOF1Pg/edit#heading=h.mn48hr9e6wzk
https://walpo.substack.com/p/2422f310-e62d-44b1-9e3a-a504b9de4e96
https://walpo.substack.com/p/2422f310-e62d-44b1-9e3a-a504b9de4e96

	Why blockchains?
	Blockchains are bounded by design
	The rise of performant blockchains
	Performance
	Expressivity
	Rollups

	Breaking the path dependency on onchain compute
	InfinityVM: app servers with blockchain scaffolding
	Challenges with offchain compute
	Enshrining offchain compute
	Optimizing for the happy path

	Architecture
	Requests
	Validators
	Proposers
	Challengers
	Provers
	Reversions

	Examples
	Offchain App (CLOB)
	Onchain App (Dynamic Fee AMM)

	Related Works
	Coprocessors
	Enshrined Rollups
	Rollups with Beefy sequencers
	Contingent Rollups
	Franchised Sequencers
	AggLayer / Elastic Chains
	Cartesi
	Naysayer Proofs naysayer

	Conclusions

